

CBECS 2012 Analysis Update: ENERGY STAR Score for Office

June 9, 2016

Alexandra Sullivan ENERGY STAR for Commercial Buildings

Agenda

Kick-Off Survey Results

- Trends in the Market
- Comparison to CBECS
- Data Centers

CBECS Regression Modelling

- 2003 to 2012 Comparison
- Base Model
- Climate and Weather Findings
- Remaining Factors to Analyze

Next Steps

Are offices becoming more efficient?

- You say...
 - Yes
 - 75% of respondents think offices use less energy/are more efficient

CBECS says...

- Yes
- The CBECS data also suggests lower energy intensity for 2012 as compared with 2003

What does this mean for you?

- If buildings are more efficient, then it is more likely that scores will decrease when we make changes
- As the market improves, it requires better efficiency to reach a level of 75 or higher
- This is what we have seen in the product market (computers, refrigerators, etc.)

What factors affect energy use in Offices?

You say...

- Climate
- Hours of Operation
- Percent Occupied
- Data Centers
- Restaurants

CBECS says...

- Climate is relatively <u>less</u> important
- Hours is important
- Occupancy is very linked to worker density, with worker density likely being the more reliable variable
- Data Centers TBD (we still need to analyze)
- Restaurant TBD (we still need to analyze)

What does this mean?

- The data does not always match our perceptions
- Climate factors usually less important in commercial buildings than they are in our homes
- EPA score is based on what we see in the data

Your Responses: Important Factors (# votes per category)

	No Effect	Small/ Medium Effect	Large/ Very Large Effect
Climate Zone	1	22	45
Hours of Operation	0	15	52
Workers	0	36	32
Percent Occupied	0	21	47
Computers	0	42	26
Refrigerators	5	39	21
Data Center	1	12	54
Restaurant/ Retail	2	16	47

What about other factors?

- Many comments about technology/maintenance
 - Efficient technology improves your score by lowering your actual energy consumption
 - To allow for this benefit, we should not incorporate these factors into a regression
 - Refer to our methodology discussion from last webinar
- Some notes about "plug load"
 - While we do not count up specific pieces of equipment, correlations with both workers and computers may reflect plug load impacts
- Comments about tenants and/or amenities
 - Effect of different "types" of tenants
 - Growing trend to offer more amenities, like yoga classes, cafeterias, and game rooms
 - Is it possible to account for visitors separately from workers?

→ Note that we cannot account for factors that are not part of CBECS, but we could recommend new questions for the next survey...

Poll: Tell us what you think

- Do you think it would be useful to have a question in the CBECS analysis to capture the number of visitors?
 - Yes
 - No
 - Don't Know
- Are there any specific amenities that you think would make good CBECS questions (e.g. fitness center, game room)?
 - Free Response
- What types of tenants do you think use the most energy?
 - Free Response
- What types of tenants do you think use the least energy?
 - Free Response

Data Centers – Survey Input

- Server Closets are common
 - These are likely common for CBECS offices, too
- Data Centers over 3,000ft² are rare
- Free response comments
 - It is important for EPA to adjust for Data Centers
 - It is difficult to measure IT
 Energy at Data Centers

Data Center Methodology

Today – Require IT Energy Measurement

- IT energy is the electricity that goes to the servers/storage devices (not the same as total data center energy)
- It is a best practice to measure this if you want to track and improve your data center performance

Possible Alternatives?

- There is a new CBECS variable capturing data center size
- We will explore correlations based on the presence and size of a data center
- Will consider a "data center" use detail within office
- Will consider an approach that does not require IT Energy measurements (e.g. a square foot approach)

Limitations

- Energy use in data centers is highly variable
- It may not be possible to develop a good adjustment based on square foot
- A number based on square foot may be very conservative
- If an alternate approach is offered
 - It may be limited to smaller data centers
 - The IT measurement approach will still be the preferred/recommended approach

Poll: Tell us what you think

- Do you have any offices that <u>do not</u> have server closets?
 - Yes
 - No
 - Don't know
- At what size threshold does the presence of a data center in one office building make it hard to compare against a second office building without a data center?
 - When any Data Center is present
 - When a Data Center is 2% of the floor area or more
 - When a Data Center is 5% of the floor area or more
 - When a Data Center is 10% of the floor area or more
- Energy efficiency of my data centers is very important to my organization
 - Strongly disagree
 - Disagree
 - Neutral
 - Agree
 - Strongly Agree
 - Don't Know/Don't Care

Preliminary CBECS Analysis and Regression Models

Median Value Comparison: 2003 to 2012

- Energy Intensity is lower for 2012
 - This trend may or may not hold true after we normalize for operational factors and climate within the regression
- Worker Density and Computer Density also appear lower in 2012
 - This data is the opposite of market trends that we hypothesized
 - Could it be that denser work areas are also counter-balanced by more common spaces and amenities, which lower the overall worker density of the building?
- Hours are also slightly lower in 2012
- Trends look the same for each subtype (Office, Bank, Court)
 - Exact values will be different for each type and may also show correlations with other factors, like size

	2003	2012
Source EUI	154	129
Worker Density	2.04	1.88
Computer Density	2.29	2.00
Hours of Operation	48	46

Base Model Comparison

- We have identified basic terms that are statistically significant with any subset of the data
 - Hours, Worker Density, Computer Density, and Cooling Degree Days (CDD)
 - A p-value below 0.10 indicates significance at the 90% confidence level
- Model looks similar whether we run with a minimum of 1,000 ft² or 5,000 ft²
 - EPA is considering lowering the size requirement below 5,000 ft² if possible
- We are using this baseline model to assess the impact of other factors
 - Data Center, Restaurant, Bank Branch

	Base Model 1,000 ft ² Minimum Size		Base Model 5,000 ft ² Minimum Size	
Regression Term	Coefficient	p-value	Coefficient	p-value
Constant	50.99	0.0003	23.68	0.1084
Hours	0.502	0.0032	0.7098	0.0000
Worker Density	14.13	0.0049	20.79	0.0006
PC Density	7.198	0.0226	10.54	0.0123
CDD times % Cooled	0.01651	0.0004	0.01323	0.0256

Base Model Performance

- Ideal graph should show 10% in each bin
 - Just as many buildings would score 1-10 as score 90-100
 - Common to see some slight variations from one bin to the next
- For CBECS data, both base models show expected performance
 - We will also test this type of graph using Portfolio Manager, including different subsets (Bank, Office, Court, different size categories, etc.)

Poll: Tell us what you think

- How important is it to you to have a score that can accommodate offices that are smaller than 5,000 square feet in size?
 - Not important, I don't have small buildings
 - Good to have
 - Extremely Important
 - Don't Know
- Do you think that large buildings should score differently than small buildings?
 - No if EPA does the model right, all buildings should score the same
 - Yes Larger buildings are more efficient and should score better
 - Yes Larger buildings are less efficient and should score worse

Climate: A Closer Look at CBECS

- There is a stronger positive trend for Cooling Degree Days (CDD) than for Heating Degree Days (HDD)
 - Offices are more heavily driven by internal loads
 - Dark lines on graph show linear trend in the data
- Trend for HDD is slightly negative
 - HDD and CDD can have a correlation with each other
- Not all ENERGY STAR scores adjust for both HDD and CDD
 - In Canada (colder climate) we have models that have only HDD
 - In the US, the Hospital model relies on CDD only (not HDD)
 - Likely due to internal loads

How does climate compare to other factors?

- Worker Density is a good point of comparison
- The graph shows a steeper line/ bigger effect
- This result does not mean that we don't use a lot of energy for cooling
 - Rather, this aspect of operation is not as important when comparing energy use between buildings
 - The difference between an office with 4 workers per thousand square foot as compared to one with 2 workers per thousand square foot is bigger than the difference between one in a cold climate and one in a hot climate

What does the data in Portfolio Manager say?

- Similar to CBECS, the data in Portfolio Manager also does not exhibit a strong correlation with Heating Degree Days
 - Graph shows a random sample of 2,000 Offices in Portfolio Manager
 - Portfolio Manager does not slope downward like CBECS, but does not slope upward either
 - Properties in areas with higher HDD do not show higher EUI for either set
- Also similar to CBECS, the Portfolio Manager relationships for Worker Density and Operating Hours are stronger than for Cooling Degree Days
 - https://www.energystar.gov/buildings/tools-and-resources/datatrends-energy-use-office-buildings

Linear (Portfolio Manager Data)

Linear (Survey Data)

Model with and without HDD

- The following comparative models show that the term for HDD is <u>not</u> statistically significant
 - To be statistically significant, the p-value must be less than 0.10
- Similar results seen with other variable formats
 - HDD on its own, natural log of HDD

	Base Model		Base Model with HDD	
Regression Term	Coefficient	p-value	Coefficient	p-value
Constant	50.99	0.0003	47.47	0.0210
Hours	0.502	0.0032	0.502	0.0032
Worker Density	14.13	0.0049	14.15	0.0049
PC Density	7.198	0.0226	7.204	0.0226
CDD times % Cooled	0.01651	0.0004	0.01740	0.0039
HDD times % Heated			0.00064	0.8126

How would a model without HDD score properties in cold climates?

- Using the base model without a term for HDD, we observe the full range of scores (1 to 100) for buildings in all climates
- When the model is working, the graph below should appear to be scatter, with no clear trend
 - See high and low scores at both high and low HDD climates

Poll: Tell us what you think...

- Based on the findings presented today, if EPA were to proceed with a model that did not include a specific term for HDD, would you be satisfied?
 - Yes I would be satisfied
 - No I want to see HDD in a model.
 - Neutral I don't have a strong opinion
 - Don't know/Maybe I'd like to see more information
- On average, how many months of the year do you cool your building(s), either with an economizer or a mechanical system?
 - 0-2 months
 - 3-4 months
 - 5-6 months
 - 7-8 months
 - 9-10 months
 - 11-12 months
- On average, how many months of the year do you heat your building(s)?
 - 0-2 months
 - 3-4 months
 - 5-6 months
 - 7-8 months
 - 9-10 months
 - 11-12 months

Factors still to analyze

- Data Center Do the new CBECS variables provide us with new information that can allow us to offer a different approach for data centers?
- Size Effects
 - What will be the minimum size requirement for Offices?
 - Do larger buildings behave differently than smaller ones?
- Restaurant Do variables about restaurants and/or refrigeration improve the base model?
- Percent Occupancy Do percentage occupancy and/or percent cubicle space enable us to refine the adjustment for worker density?
- Bank Branch and Courthouse How do Bank Branches and Courthouses differ from Offices? What additional adjustments are necessary?

Schedule Reminder

- Spring/Summer 2016
 - Bulk of Office analysis will be completed by the end of the summer
- Fall 2016 Spring 2017
 - Focus will be on other property types (hotel, K-12, etc.)
 - Based on our findings we may revisit our office analysis
- Summer 2017
 - Run comparative analysis across property types
 - Re-estimate all models with updated source factors
- Fall 2017
 - Programming/Testing in Portfolio Manager
- → Hope is to launch new scores in early 2018

Next Webinar: July

- Please be on the lookout for our next webinar
 - Date TBD
 - https://esbuildings.webex.com/
- We will cover the results of our remaining analysis and provide our recommended office model
- Between now and then, feel free to reach out with questions and suggestions at any time
 - www.energystar.gov/BuildingsHelp

Questions & Discussion

